
Internet Traffic Classification Demystified: On the Sources
of the Discriminative Power

Yeon-sup Lim
University of Massachusetts

Amherst
MA, USA

ylim@cs.umass.edu

Hyun-chul Kim
Seoul National University

Seoul, Korea
hkim@mmlab.snu.ac.kr

Jiwoong Jeong
Seoul National University

Seoul, Korea
jwjeong@popeye.snu.ac.kr

Chong-kwon Kim
Seoul National University

Seoul, Korea
ckim@popeye.snu.ac.kr

Ted “Taekyoung" Kwon
Seoul National University

Seoul, Korea
tkkwon@snu.ac.kr

Yanghee Choi
Seoul National University

Seoul, Korea
yhchoi@snu.ac.kr

ABSTRACT
Recent research on Internet traffic classification has yield a
number of data mining techniques for distinguishing types
of traffic, but no systematic analysis on “Why" some algo-
rithms achieve high accuracies. In pursuit of empirically
grounded answers to the “Why" question, which is critical in
understanding and establishing a scientific ground for traffic
classification research, this paper reveals the three sources
of the discriminative power in classifying the Internet appli-
cation traffic: (i) ports, (ii) the sizes of the first one-two (for
UDP flows) or four-five (for TCP flows) packets, and (iii) dis-
cretization of those features. We find that C4.5 performs the
best under any circumstances, as well as the reason why; be-
cause the algorithm discretizes input features during classifi-
cation operations. We also find that the entropy-based Min-
imum Description Length discretization on ports and packet
size features substantially improve the classification accu-
racy of every machine learning algorithm tested (by as much
as 59.8%!) and make all of them achieve >93% accuracy
on average without any algorithm-specific tuning processes.
Our results indicate that dealing with the ports and packet
size features as discrete nominal intervals, not as continuous
numbers, is the essential basis for accurate traffic classifica-
tion (i.e., the features should be discretized first), regardless
of classification algorithms to use.

1. INTRODUCTION
Traffic classification has gained substantial attention

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 - December 3, 2010, Philadelphia,
USA.
Copyright 2009 ACM 978-1-4503-0448-1/10/0011 ...$5.00.

within the Internet research and operation community
given recent events and struggles over the appropriate
use and pricing of the Internet. Accurate and complete
traffic classification is an essential task for understand-
ing, operating, optimizing, and financing the Internet
as well as planning improvements in future network ar-
chitectures.
In the early Internet, traffic classification practices

largely relied on the use of transport layer port num-
bers, typically registered with IANA to represent a well-
known application. As some increasingly popular appli-
cations that support peer-to-peer file sharing hide their
identity by assigning ports dynamically and/or mas-
querading into the well-known ports of other applica-
tions, the port-based classification has become less re-
liable [27, 35, 44]. A more recent and reliable approach
adopted by commercial tools [1, 2] inspects packet pay-
loads to find specific string patterns of known appli-
cations [22, 28, 35, 44]. While this approach is more
accurate, it fails to work on encrypted traffic and en-
tails tremendous privacy and legal concerns which often
preclude access to payload data.
More recently, the research community has responded

by developing classification techniques capable of in-
ferring application-specific communication and/or sta-
tistical patterns without inspection of packet payloads,
most of which are categorized into (1) host-level com-
munication behavior-based approach which takes ad-
vantage of information regarding “social” interaction of
hosts [9, 10, 12, 25, 26], and (2) traffic flow features-
based approach, which classifies based on flow dura-
tion, the number and size of packets per flow, and inter-
packet arrival time [34, 36, 42, 6, 13, 16, 4, 10, 52, 15,
47, 31]. In particular, substantial attention has been in-
vested in data mining techniques and machine learning
algorithms using flow features for traffic classification,
demonstrating that several different machine learning

algorithms successfully classify IP traffic flows with >
90∼95% accuracy, when tuned and/or trained properly.
Several researchers have published papers where they
apply and tune a single machine learning algorithm to
classify IP traffic.
Despite many published papers for traffic classifica-

tion, there are still no clear answers to the following
“Why?” questions that are critical in understanding
and establishing a scientific ground for traffic classifi-
cation research: “Why do some machine learning algo-
rithms - even with diverse theoretical or statistical back-
grounds and different tuning parameters - achieve such
a moderately high level of accuracy (> 90∼95%), while
others do not? What is the primary cause of the simi-
lar and/or different classification performance of those
algorithms? Do the higher accuracies obtained from dif-
ferent algorithms imply a possibility of the existence of
“common” sources or techniques of the discriminative
power in traffic classification? If so, what are they?”
In pursuit of the answers related to deeper insight

into the nature of the Internet traffic classification prob-
lem, we performed a detailed drill-down data analysis
to reveal the sources of the discriminative power in traf-
fic classification. We highlight the main contributions
from our study:
(a) This paper publicly raises awareness and interest

on the above “Why?” questions still under-appreciated
by the research community, and then performs an in-
depth analysis to derive empirically grounded answers.
To this end, we strategically test several commonly used
supervised machine learning algorithms (Naive Bayes,
Support Vector Machines, k -Nearest Neighbors, and
C4.5 Decision Tree, etc.) on a broad range of data
sets: five payload traces collected at two backbone and
one edge links located in Japan, Korea, and the US.
Diverse geographic locations, link characteristics, and
application traffic mix in these data allowed us to test
the algorithms under a wide variety of conditions.
(b) This is the first work that clearly shows the feasi-

bility of accurate traffic classification at the beginning of
single-directional TCP and UDP application flows. We
found that (i) ports and the sizes of the first one-two
packets in a single-directional UDP application (e.g.,
NTP, DNS, and SMTP) flow provide a sufficient amount
of information to accurately identify the causing appli-
cation, and (ii) ports and the sizes of the first four-five
consecutive packets in a single-directional TCP appli-
cation flow are expressive enough to distinguish among
different applications. These findings can be applied to
build an early traffic classifier that handles both TCP
and UDP as well as edge and backbone traffic, where
one direction of a TCP flow may be unobserved due to
routing asymmetries.
(c) We also found that classification accuracy de-

creases when the first few packets are missed; thus, for

accurate classification, traffic flows should be captured
from the beginning, not in the midst.
(d) We found that C4.5 Decision Tree algorithm con-

sistently achieved the highest accuracy on every trace
and application, with 96.7% accuracy on average when
used with ports and the sizes of the first five consecu-
tive packets. We also found the reason Why the algo-
rithm worked that well; due to its own entropy-based
discretization capability, which we will explain in sec-
tion 5.
(e) We found that the entropy-based discretization

technique can be applied to improve the classification
accuracies of other machine learning algorithms as well.
The entropy-based Minimum Description Length algo-
rithm significantly improved every tested algorithm by
as much as 59.8%, making all of them achieve >93% ac-
curacy on average without any algorithm-specific tuning
processes. We also found that even the simplest dis-
cretization technique called the Equal-Interval-Width
significantly improves the classification accuracies of the
machine learning algorithms.
(f) Our results indicate that the classification algo-

rithms should deal with ports and packet size features
as discrete non-numerical nominal (or categorical) in-
tervals, not as continuous numbers, for accurate traf-
fic classification. Thus, those flow features should be
discretized first as a preprocessing step, before classi-
fication algorithms run. This means that dealing with
those flow features as discrete non-numerical intervals,
not as continuous numbers, is the essential basis (i.e.,
the source of the discriminative power) for accurate
early traffic identification, regardless of classification al-
gorithms to use.
The rest of this paper proceeds as follows: After re-

viewing related work in section 2, we describe our data
and methodology in section 3. Section 4 evaluates the
discriminative power of traffic flow features, in particu-
lar ports and the first few to several consecutive packets
of single directional TCP and UDP application flows.
Section 5 investigates the impact of discretization on
traffic classification performance. We briefly discuss
why discretization works well and what it means for
traffic classification, concluding this paper in section 6.

2. RELATED WORK
A number of researchers have closely looked at the

flow-features based approach typically by applying ma-
chine learning techniques to classify traffic, as the three
constituent subproblems of traffic classification are es-
sentially identical to the following three main challenges
of machine learning-based pattern recognition and clas-
sification: (i) key feature selection, (ii) finding the best
algorithm(s) for traffic classification, and (iii) obtaining
representative data sets for training and testing ma-
chine learning algorithms. In this section, we briefly

Table 1: Characteristics of analyzed traces

Set Date Day Start Duration Link type Src.IP Dst.IP Packets Bytes Avg. Util
Avg. Flows
(/5 min.)

Payload

PAIX 2004-02-25 Wed 11:00 2h Backbone 410K 7465K 250M 91G 104Mbps 1055K 16Bytes
WIDE-I 2006-03-03 Fri 22:45 55m Backbone 263K 794K 32M 14G 35Mbps 312K 40Bytes
WIDE-II 2007-01-09 Tue 07:45 27h 15m Backbone 1406K 2154K 1544M 1064G 87Mbps 346K 40Bytes
KAIST-I 2006-09-10 Sun 02:52 48h 12m edge 148K 227K 711M 506G 24Mbps 19K 40Bytes
KAIST-II 2007-01-09 Tue 19:00 54h 45m edge 244K 348K 1029M 827G 34Mbps 14K 40Bytes

review previous work along the first two categories of
efforts, on which the primary focus of this paper lies.
Key feature selection: finding a set of key traffic fea-

tures that capture inherently fundamental and distin-
guishing characteristics of different types of applica-
tions. Several papers [18, 34, 36, 42, 13, 4, 6, 10, 52,
15, 31, 46, 47] have worked to determine which set of
features work best for classification purposes, sharing
the following limitations:
First, they used bidirectional TCP connection statis-

tics, which do not work for UDP application traffic, and
for backbone links, which only see both directions of
traffic under (atypical) symmetric routing conditions [29].
Erman et al. addressed this limitation by proposing
an algorithm that uses the packets of an unidirectional
TCP flow to estimate the flow statistics of the unob-
served opposite direction [16], leaving UDP traffic clas-
sification as future work. In this paper, we use a set
of single directional flow features only, which will allow
an algorithm to classify both TCP and UDP traffic on
backbone as well as edge links, as Kim et al. did in [29].
Second, they often considered and performed the task

of key feature selection only as a pre-processing phase
using a single specific technique like Correlation-Based
Filter and Consistency-based subset search [46, 47], which
outputs only a single bunch of the same features for all
applications, not on a per-application basis. In con-
trast, this paper drills down further to investigate ex-
actly which subset of key features (e.g., which sort of
features, which packet size, etc.) are more or less rele-
vant [7] in identifying a specific type of application, pro-
viding deeper understanding and insight into the distin-
guishing characteristics of different applications to both
the research and operational communities.
Finding the best algorithm(s) and the reasons “Why”:

finding the most accurate algorithm(s) that successfully
grasp and exploit the discriminative power contained in
(a selected set of) key features with acceptable compu-
tational cost. Several researchers have published papers
based on a single machine learning technique such as K-
Means, Support Vector Machines, C4.5 Decision Trees,
Bayesian algorithms, Neural Networks, etc. They have
often used an off-the-shelf algorithm in a “black-box
manner” focusing more heavily on introducing, apply-
ing and tuning a specific data mining technique for ac-
curate traffic classification, rather than drilling down

to look inside the black-boxed classification processes
and interpreting the results to reveal the specific na-
ture of the interrelations between the input variables
(e.g., selected set of features and tuned parameters),
the used technique/algorithm itself, and the classifica-
tion results.
Moreover, the results from different research groups

are often neither comparable nor reproducible, as ev-
ery approach has been evaluated using different bench-
mark traces, typically locally collected but not pub-
licly available, sometimes even without payload (ground
truth) [29, 14, 43]. Consequently, there are no defini-
tive answers to our initial “Why” questions raised in
the previous section, which we address in this paper by
performing various experiments against a broad range
of data sets containing a wide variety of link and traffic
conditions.

3. METHODOLOGY
This section describes a methodology for identifying

sources of the discriminative power in traffic classifi-
cation, including performance metrics, dataset, estab-
lishing reference benchmark (ground truth), and exper-
imental setup for machine learning algorithms.

3.1 Performance metrics
To evaluate the traffic classification performance of

machine learning algorithms, we use five metrics: over-
all accuracy, precision, recall, F-measure, and classifi-
cation speed:

• Overall accuracy: the ratio of the number of cor-
rectly classified traffic flows to the total number
of all flows in a given trace. We apply this met-
ric to measure the accuracy of a classifier on the
whole trace set. The following three metrics are
to evaluate the quality of classification results for
each application class.

• Precision: the ratio of True Positives over the sum
of True Positives and False Positives or the per-
centage of flows that are properly attributed to a
given application.1

1True Positives is the number of correctly classified flows,
False Positives is the number of flows falsely ascribed to a
given application, and False Negatives is the number of flows

• Recall: the ratio of True Positives over the sum
of True Positives and False Negatives or the per-
centage of flows in an application class that are
correctly identified.

• F-measure: as a widely-used metric in informa-
tion retrieval and classification [48], it considers
both precision and recall in a single metric by tak-

ing their harmonic mean (
2× precision× recall

precision+ recall
).

We use this metric to measure the per-application
classification performance of machine learning al-
gorithms.

• Classification speed: the number of classification
decisions performed per second.

3.2 Data set and reference benchmark
Our datasets consisted of five anonymized payload

traces collected at two backbone links and one edge
link located in Japan, Korea, and the U.S. (Table 1).
The PAIX backbone trace was taken on a single di-
rectional OC48 link of a US Commercial Tier 1 back-
bone link connecting San Jose and Seattle. The WIDE
traces were captured at a 100 Mbps 2 Ethernet US-
Japan Trans-Pacific backbone link that carries com-
modity traffic for WIDE member organizations. The
KAIST traces were captured at one of four external
links connecting KAIST campus network and a national
research network in Korea at 1 Gb/s 3

To establish a reference point in evaluating the algo-
rithms, we used the payload-based classifier developed
and used in [29, 28, 44, 13, 49]. The resulting classifier
includes payload signatures of various popular applica-
tions, summarized in Table 2. The payload classifica-
tion procedure examines the payload contents of each
packet against our array of signature strings, and in case
of a match, classifies the corresponding flow with an
application-specific tag. Previously classified flows are
not re-examined again unless they have been classified
as HTTP, in which case re-examination may allow iden-
tification of non-Web traffic relayed over HTTP (e.g.,
Streaming, P2P, etc.) [28]. Our experience [29] and
Karagiannis et al.’s study [27] has suggested that the
first 16 bytes of payload suffice for signature-based clas-
sification for most legacy and P2P applications except
Gnutella 4.

from a given application that are falsely labeled as another
application.
2The link was upgraded from 100 Mbps to 150 Mbps on
June 1, 2007, according to the WIDEMAWIWorking Group
homepage (http://mawi.wide.ad.jp).
3The WIDE-II and KAIST-II traces were collected during
the “A Day in the Life of the Internet (DITL)” simultaneous
Internet data collection event on January 9-10, 2007 [8].
4Gnutella (and its variants) uses variable length payload
padding; Erman et al.’s measurements indicate that 400 pay-

Table 2: Application Categories
Category Application/protocol
Web HTTP, HTTPS
P2P FastTrack, eDonkey, BitTorrent, Ares,

Gnutella, WinMX, OpenNap, MP2P,
SoulSeek, Direct Connect, GoBoogy,
Soribada, PeerEnabler, Napster
Blubster, FileBEE, FileGuri, FilePia
IMESH, ROMNET, HotLine, Waste

FTP FTP
DNS DNS
Mail/News BIFF, SMTP, POP, IMAP, IDENTD, NNTP
Streaming MMS(WMP), Real, Quicktime, Shoutcast,

Vbrick Streaming, Logitech Video IM
Backbone Radio, PointCast, ABACast

Network Operation Netbios, SMB, SNMP, NTP
SpamAssasin, GoToMyPc, RIP
ICMP, BGP, Bootp, Traceroute

Encryption SSH, SSL, Kerberos, IPSec, ISAKMP
Games Quake, HalfLife, Age of Empires, DOOM

Battle field Vietnam, WOW, Star Sieze
Everquest, Startcraft, Asherons, HALO

Chat AIM, IRC, MSN Messenger, Yahoo messenger
IChat, QNext, MS Netmeet, PGPFone, TALK

Attack Address scans, Port scans
Unknown -

3.3 Machine learning experiments
We use theWEKAmachine learning software suite [3],

often used in traffic classification efforts [29, 13, 17, 34,
36, 37, 46, 47], to perform various experiments with
machine learning algorithms . From each trace set in
Table 1, we randomly sample 1,000 flows per applica-
tion (to avoid the class imbalance problem [47, 14]) and
then aggregate the sampled flows into a training set.
From the remaining flows of each trace set, another
1,000 flows are randomly sampled per application and
then merged into a testing set.

3.3.1 Flow features
We use unidirectional flow features of TCP and UDP

traffic to build a classifier that handles both TCP and
UDP as well as backbone and edge traffic. Throughout
this paper, we adopt the definition of a traffic flow based
on its 5-tuple (source IP, destination IP, protocol, source
port, destination port) with a timeout of 64 seconds [9].
We start with 36 features most of which were inspired

from the 248 bidirectional features used in [36, 4], the
22 bidrectional features in [46, 47], and the 37 unidirec-
tional features in [29]. The 36 features include: proto-
col, source and destination ports, the number of pack-
ets, transferred bytes, start time, end time, duration,
average packet throughput and byte throughput, the
size of the first ten packets, max/min/average/standard
deviation of packet sizes and inter-arrival times, the
number of TCP packets with FIN, SYN, RSTS, PUSH,
ACK, URG (Urgent), CWE (Congestion Window Re-
duced), and ECE (Explicit Congestion Notification Echo)
flags set (all zero for UDP packets).

load bytes of each packet is required to identify 90% of the
Gnutella flows using payload signatures [15].

3.3.2 Machine learning algorithms
In this paper, we choose four machine learning algo-

rithms to evaluate the discriminative power of features
and the effect of discretization: Naive Bayes, k-Nearest
Neighbors, Support Vector Machines, and C4.5 Deci-
sion Tree.
Naive Bayes (NB) [36, 47] is a probabilistic classifier

based on Bayes theorem, which analyzes the relation-
ship between each feature and the application class for
each instance so as to derive a conditional probability
that links feature values and the class. The naive as-
pect is the assumption that all attributes (X1, ..., Xn)
are conditionally independent of one another, given the
class Y. The value of this assumption is that it dramat-
ically simplifies the representation of P (X|Y), and the
problem of estimating it from the training data. De-
spite the naive assumption, Naive Bayes works well in
practice, particularly when combined with good feature
selection methods. Another strength of the Naive Bayes
method is that it produces a probability for each clas-
sification which could be used to give a confidence level
to each prediction. The Naive Bayes algorithm affords
fast, highly scalable model building and classification.
k-Nearest Neighbors (k-NN) [42] computes Eu-

clidean distances from each test instance to the k near-
est neighbors in the n-dimensional feature space. The
classifier assigns the majority class label among the k
nearest neighbors to the tested tuple. This technique
scales poorly with the number of training and testing
instances, since each new test tuple is compared to ev-
ery tuple in the training set. We use k = 1, by which
we obtained the highest overall accuracy after testing
with k = 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19.5

C4.5 Decision Tree [41] constructs a model based
on a tree structure, in which each internal node repre-
sents a test on features, each branch an outcome of the
test, and each leaf node a class label. In order to use
a decision tree for classification, a given tuple (whose
class we want to predict) corresponding to flow features,
walks through the decision tree from the root to a leaf.
The label of the leaf node is the classification result. De-
cision trees provide us easily interpretable classification
rules, which makes the technique favorable.
Support Vector Machines (SVM) [46, 31] refers

to a learning system based on recent advances in sta-
tistical learning theory. The SVM follows the principle
of Structural Risk Minimization that minimizes an up-
per bound on the expected risk, as opposed to tradi-
tional Empirical Risk Minimization that minimizes the
error on the training data, so the SVM is known to
have a greater ability to generalize which is the goal
in statistical leaning. The basic principle of SVM is

5k=1 means that the algorithm checks the class of the only
nearest (in the n-dimensional feature space) training in-
stance when classifying a testing instance.

to construct the optimal separating hyperplane, which
maximizes the distance between the closest sample data
points in the (reduced) convex hulls for each class, in an
n-dimensional feature space [8]. Intuitively, we would
expect this boundary between classes to be more gen-
erally applicable than others.
We use the Sequential Minimal Optimization (SMO) [38],

a faster algorithm for training SVM that uses pairwise
classification to break a multi-class problem into a set
of 2-dimensional subproblems, eliminating the need for
numerical optimization. The two most important pa-
rameters in SVM are the complexity parameter C and
the polynomial exponent p [46, 31]. Li et al. [31] showed
that varying the complexity parameter C influenced the
overall accuracy of their SVM traffic classifier by only
a little (around 1% at most). We use 1 for both param-
eters as in [46, 48].

4. ON THE DISCRIMINATIVE POWER OF
TRAFFIC FLOW FEATURES

In this section, we first measure the discriminative
power contained in single directional traffic flow fea-
tures. Unlike the previous work where they used a single
specific technique like Correlation-Based Filter (CFS) [23]
and Consistency-based subset search [46, 47], which
outputs only a single bunch of the same features for
all applications as a pre-processing step, we leverage
four machine learning algorithms to further investigate
(i) which sort of features possess more discriminative
power in classifying traffic and how relevant/powerful
they are, (ii) whether the results (i.e., selected subset
of features) are consistent across different algorithms
and traces (or not), and (iii) which features are most
important in identifying a specific type of application.
For the experiments, we first group flow features that
carry closely related pieces of traffic information, as in
Table 3.

Table 3: Specification of Feature Group
Group Features

PORTS protocol, srcport, dstport

PKTS number of packets

BYTES transferred bytes

DURATION first time, last time, duration

PKT THRPT avg. packet throughtput

BYTE THRPT avg. byte throughtput

PKT SIZE
(max/min/avg/std) packet size, size of
the first 10 packets

IPAT (max/min/avg/std) inter-packet ar-
rival time

TCP FLAG
number of tcp packets with TCP flags
set (FIN, SYN, ...)

4.1 Key feature group selection
Figure 1 shows the overall accuracy (averaged over

 0

 20

 40

 60

 80

 100

PORTS

PKTS
BYTES

DURATION

PKT THRPT

BYTE THRPT

PKT SIZE

IPAT
TCP FLAG

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

Feature Group

Naive Bayes
SVM

kNN
C4.5

Figure 1: Average overall accuracy by features

all the traces) of the four machine learning algorithms
when used with a selected group of flow features. In
this figure, two significant observations are obtained:
(i) packet size and ports information always yield the
highest accuracies across all the algorithms and traces
tested. (ii) In particular, they yield an overall accu-
racy as much as 80∼90% when used with k-NN and
C4.5. The two algorithms always significantly outper-
form other algorithms with every sort of flow features
used.
Figure 2 and 3 show the average per-application ac-

curacy (i.e., F-measure) of the two best performed al-
gorithms (C4.5 and k-NN) with each category of fea-
tures, per selected applications (edonkey, BitTorrent,
Web, etc.). In the figures, we observe that almost all
applications are identified with >80∼90% of F-measure
by ports and packet size information. Interestingly, we
find that the “transferred bytes” is also a good feature
in identifying UDP flows of NTP, DNS, edonkey and
BitTorrent, although it may not be as good as ports
and packet size are. Comparing Figure 2 and 3, we
find that C4.5 performs notably better than k-NN in
accurately identifying Mail, FTP, and Web flows with
ports information. This performance gap between the
two algorithms is due to the C4.5’s entropy-based dis-
cretization, which we will explain in section 5.

edonkey

BitTorrent

Web

FTP

Mail

DNS

NTP

PORTS

PKTS
BYTES

DURATION

PKT THRPT

BYTE THRPT

PKT SIZE

IPAT
TCP FLAG

A
pp

lic
at

io
n

Feature Group

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 2: Avg. F-measure by features (C4.5)

edonkey

BitTorrent

Web

FTP

Mail

DNS

NTP

PORTS

PKTS
BYTES

DURATION

PKT THRPT

BYTE THRPT

PKT SIZE

IPAT
TCP FLAG

A
pp

lic
at

io
n

Feature Group

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 3: Avg. F-measure by features (k-NN)

4.2 Discriminative power of each packet size
feature

In this subsection, we investigate exactly which packet
size feature (among those in the PKT SIZE group) has
the most or more discriminative power in classifying
traffic.
As shown in Figure 4, we find that statistical packet

size information (e.g., the max and average packet size)
often yields higher accuracy than other individual packet
sizes, among which the first (for UDP application flows)
and third (for TCP application flows) ones provide the
best performance being followed by the fourth, second,
and fifth ones. As the max and average packet sizes are
obtained only after a flow has finished, these features
are not suitable for early traffic classification. There-
fore, we focus on the discriminative power contained
in the size of the first ten individual packets, target-
ing early traffic classification with uni-directional flow
features only.
Figure 5 and 6 show the average F-measure of C4.5

and k-NN with each individual packet size feature per
selected applications. We find that the size of the first
packet contributes the most in identifying UDP applica-
tion flows; C4.5 and k-NN identify NTP and DNS flows
with >75∼80% F-measure with the first packet size in-
formation only. On the contrary, for (uni-directional)
TCP application flows with the three-way handshake,
the sizes of the second-sixth (to be more precise, the
second packet from a TCP connection receiver - not an
initiator -, and the third-sixth packets from both sides)
packets are key features to identify the causing appli-
cations. This is because applications with TCP finish
their connection negotiation phase at the first or sec-
ond packet in an uni-directional flow thus the following
second or third packet typically has an application spe-
cific packet size. In the case of Mail and Web flows,
the first packet size does not contain any useful infor-
mation for accurate classification as they all are gen-
erated in the pre-defined TCP connection setup phase.
For multi-protocol applications like edonkey and Bit-
Torrent, the size of the first packet and the following

second-sixth packets capture distinguishing patterns of
their own UDP and TCP flows, respectively. As some
FTP flows do not always start with a new TCP connec-
tion setup phase (e.g., when using a TCP connection
already established more than 64 seconds before), the
F-measures on FTP flows with the first packet size is
not marked around 0% unlike the cases with Mail and
Web.

 0

 20

 40

 60

 80

 100

M
A

X
PK

T

A
V

G
PK

T

M
IN

PK
T

STD
PK

T

PC
K

1

PC
K

2

PC
K

3

PC
K

4

PC
K

5

PC
K

6

PC
K

7

PC
K

8

PC
K

9

PC
K

10

A
v
er

ag
e

A
cc

u
ra

cy
(%

)

Feature

SVM
NB

kNN
C4.5

Figure 4: Average overall accuracy by packet
size features

edonkey

BitTorrent

Web

FTP

Mail

DNS

NTP

PCK1
PCK2

PCK3
PCK4

PCK5
PCK6

PCK7
PCK8

PCK9
PCK10

A
pp

lic
at

io
n

Packet Size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 5: Average F-measure by packet size fea-
tures (C4.5)

edonkey

BitTorrent

Web

FTP

Mail

DNS

NTP

PCK1
PCK2

PCK3
PCK4

PCK5
PCK6

PCK7
PCK8

PCK9
PCK10

A
pp

lic
at

io
n

Packet Size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 6: Average F-measure by packet size fea-
tures (kNN)

4.3 Adaptability to early classification
In the previous subsection, we found that (i) the sizes

of individual packets in an uni-directional traffic flow
carry useful information for distinguishing types of traf-
fic, and (ii) the sizes of the first two packets contribute
the most in identifying UDP application flows, while
those of the following second-sixth packets do the same
for TCP application flows.
In this subsection, we explore the feasibility of early

traffic classification using uni-directional flow features
only; the sizes of the first n consecutive packets. Fig-
ure 7(a) compares the average overall accuracy of the
four machine learning algorithms when using the sizes
of the first n consecutive packets, varying n from one
to ten. Similar to the results in [6] (where/though they
used bi-directional TCP connection information), C4.5,
k-NN, and Naive Bayes achieve the highest accuracies
when used with the sizes of the first four or five packets.
The addition of the sixth-tenth packet sizes does not
increase classification performance of the algorithms;
rather slightly decreases.
Figure 7(b) shows the average F-measure of the best-

performed algorithm, C4.5, in the same experiment.
Just as we found in the previous subsection 4.2, here
we confirmed again that the sizes of the first one-two
packets are the most important features for accurate
identification of UTP application traffic, while the al-
gorithm needs the sizes of the first four to five packets
to accurately classify TCP application traffic.

 0

 20

 40

 60

 80

 100

1
1~

2
1~

3
1~

4
1~

5
1~

6
1~

7
1~

8
1~

9
1~

10

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

Packet Size Combination

NB
SVM

kNN
C4.5

(a) Avg. overall accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1~
2

1~
3

1~
4

1~
5

1~
6

1~
7

1~
8

1~
9

1~
10

F-
m

ea
su

re

Packet Size Combination

edonkey
BitTorrent

Web

FTP
DNS
NTP

(b) Avg. F-measure (C4.5)

Figure 7: Influence of the number of packets on
classification accuracy

4.4 What if the first few packets are missed?
In the last subsection, we found that the sizes of the

first five consecutive packets play an important role in
classifying uni-directional application traffic. In this
subsection, we raise another question; what is the key
finding here for accurate traffic classification? the first
five? or five consecutive? What happens if we miss the
first few packets? Would the sizes of any five consecu-
tive packets provide us good classification performance?
To answer the questions, we performed experiments us-

ing the six groups of packet size combination; composed
of the sizes of the 1st∼5th, 2nd∼6th, 3rd∼7th, 4th∼8th,
5th∼9th, and 6th∼10th packets.
Figure 8(a) presents the average overall accuracy ob-

tained using each of the six groups. As a group shifts
from the 1st∼5th to the 6th∼10th packet sizes, the av-
erage accuracy significantly decreases. This indicates
that the first five packet sizes are the most relevant for
accurate classification of uni-directional traffic. In par-
ticular, the elimination of the first packet size causes
a precipitous decrease in overall accuracy (as much as
20%; due to UDP application traffic).
In order to find the effect of excluding the first few

packet sizes on each application, we investigate the av-
erage change of F-measure corresponding to selected ap-
plications in figure 8(b), which presents the results of
the best-performed algorithm, C4.5. As we expected,
excluding the first packet size leads to no (for Web) or
only a marginal (for FTP) reduction in F-measure for
TCP applications. On the other hand, the F-measure
for UDP applications such as DNS and NTP drops
steeply since their first packet size is the most impor-
tant feature for accurate identification. For applications
with both protocols such as BitTorrent and edonkey, the
extent to which the F-measure drops lies between those
of the TCP-only and UDP-only applications.

 0

 20

 40

 60

 80

 100

1~
5

2~
6

3~
7

4~
8

5~
9

6~
10

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

Packet Size Combination

NB
SVM
kNN
C4.5

(a) Avg. overall accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

1~
5

2~
6

3~
7

4~
8

5~
9

6~
10

F-
m

ea
su

re

Packet Size Combination

edonkey
BitTorrent

Web

FTP
DNS
NTP

(b) Avg. F-measure (C4.5)

Figure 8: Classification accuracy when the first
n consecutive packets are missed

5. THE IMPACT OF DISCRETIZATION ON
CLASSIFICATION PERFORMANCE

In the previous section, we found that C4.5 Decision
Tree and k -NN always significantly outperform Naive
Bayes and SVM, regardless of the selected flow features
and traces. These observations had motivated us to
investigate commonalities between the two algorithms.
What we found during the investigation was that the
algorithms themselves can be used to perform a data
preprocessing operation called “Discretization”, which
will be detailed and tested in this section.

5.1 Discretization

In statistics and machine learning, discretization refers
to the process of converting numeric feature values into
a number of intervals, and then mapping each interval
to a discrete nominal symbol. These discrete nominal
symbols are used as new values, replacing the original
numeric values of the features. Discretization is defined
as follows [45]:

Definition Discretization is a function

Q : D → C

assigning a class c ∈ C to each value v ∈ D in the
domain of the attribute being discretized. A desirable
feature for a practical discretization is:

|D| > |C|

i.e., a discretized feature has fewer possible values than
the original not-discretized one.
Tho choice of the intervals, which is the key process in

discretization, can be determined by a domain expert or
with the help of an automatic procedure (i.e., discretiza-
tion algorithm) that makes the task easy. There are two
basic approaches to the problem of discretization: One
is to quantize each feature in the absence of any knowl-
edge of the classes of the instances in the training set
- so-called unsupervised discretization. The other is to
take the classes into account when discretizing - super-
vised discretization. The former approach, e.g., the sim-
plest Equal Interval Width or Equal Frequency Intervals
discretization, is the only possibility when dealing with
clustering problems in which the classes are unknown
or nonexistent [48].
As a supervised one, k -NN can be used for the pur-

pose of discretization as follows [50]: Given a feature
value, the algorithm tries to estimate which class the
value most likely belongs to. The algorithm places a
border between two values xi and xi+1 if the estimate
is different for them. The estimate is based on the as-
sumption that the most probable class is the most com-
mon class among the k nearest examples.
C4.5 can also be used as a supervised discretization

method, as the algorithm itself deals with numeric and
continuous features using an entropy-based discretiza-
tion technique [30], by which the algorithm can avoid
creating too many branches for a node. The C4.5 uses
information gain-ratio [48], an entropy-based metric, to
find a most informative border to split the value domain
of the continuous feature and then determine the parti-
tions for discrete intervals in the feature space. The al-
gorithm constructs an inductive decision tree by adopt-
ing and revising the information gain heuristic used in
ID3 [39] that selects a feature if its branching results in
the overall minimum entropy at the next layer of the
decision tree; the feature with the highest normalized
information gain is the one used to make the split de-

cision [19] 6. The algorithm then recurs on the smaller
sublists and binarizes a range at every split, until a stop-
ping criterion is satisfied; e.g., when every leaf node is
pure (all instances in the node belong to one class), it
stops. The condition can be relaxed when needed [32].
Given space limitations, interested readers are referred
to [40, 48, 32] for more details.
Based on (i) the results in the previous section 4 and

(ii) the fact that both of the two consistently best-
performed algorithms, C4.5 and k -NN, are capable of
discretizing input flow features, we had come to hypoth-
esize that the discretization, a general-purpose data pre-
processing technique (thus also can be applied to other
machine learning algorithms like Naive Bayes and SVM
as well), may be the common source of the high clas-
sification accuracies of the algorithms. The hypothesis
turned out to be true, as we will show in this section.

5.2 The entropy-based discretization with the
Minimum Description Length Principle

To test the hypothesis, we conduct the following ex-
periments: We (i) first preprocess our dataset with the
Entropy-based discretization method with the Minimum
Description Length criterion (Ent-MDL) [20], (ii) apply
machine learning algorithms on the discretized dataset,
and (iii) then compare their performance with those of
the same algorithms with the original non-discretized
data.
For the experiments, we choose the Ent-MDL, the de-

fault discretization algorithm implemented in WEKA,
as it is one of the best general techniques for super-
vised discretization [48, 30, 32]. Though both the C4.5
discretization and Ent-MDL are entropy-based meth-
ods, the latter employs a top-down stopping criterion
based on the Minimum Description Length Principle7,
one of the best ways to stop the entropy-based splitting
discretization procedure [48], while applying C4.5 to a
single feature builds a complete tree for that feature and
then applies pruning to find an appropriate number of
nodes in the tree (i.e., the number of discretization in-
tervals) in a bottom-up approach [30]. Given space lim-
itations, readers are referred to [20, 21] for more details

6Fayyad et al. showed that the maximum information gain
by the heuristic is always achieved at a cut point (e.g., the
mid-point) between the values taken by two examples of
different classes [19].
7The Minimum Description Length or MDL principle takes
the stance that the best theory for a body of data is one
that minimizes the size of the theory plus the amount of in-
formation necessary to specify the exceptions relative to the
theory. According to the MDL principle, the best general-
ization is the one that minimizes the number of bits required
to communicate the generalization, along with the examples
from which it was made [48]. In this discretization case, if
we do split, the “theory” is the splitting point, and we are
comparing the situation in which we split with that in which
we do not.

on the Ent-MDL algorithm and the MDL principle.

5.3 Accuracy results
In this subsection, we evaluate the performance of

Naive Bayes, SVM, and k -NN when used (i) with and
(ii) without the Ent-MDL discretization preprocessing.
As the C4.5 performs the entropy-based discretization (sim-
ilar to the Ent-MDL except the stopping criterion for
the number of intervals) itself, the Ent-MDL discretiza-
tion does not have to be applied for the algorithm8. As
we found that ports and the sizes of the first five packets
are the most important features in the previous section
4, we conduct the experiments using only those features
in this subsection, for brevity.
Figure 9(a) shows the average overall accuracy of the

Naive Bayes, SVM, and k -NN when used with and with-
out the Ent-MDL discretization on (a) ports, (b) the
sizes of the first five packets, and (c) the both features,
along with that of C4.5.

 0

 20

 40

 60

 80

 100

NB SVM kNN C4.5

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

without Discretization
with Discretization

(a) PORTS

 0

 20

 40

 60

 80

 100

NB SVM kNN C4.5

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

without Discretization
with Discretization

(b) 1∼5th packet sizes

 0

 20

 40

 60

 80

 100

NB SVM kNN C4.5

A
ve

ra
ge

 A
cc

ur
ac

y(
%

)

without Discretization
with Discretization

(c) PORTS and 1∼5th packet
sizes

Figure 9: Average overall accuracy with and
without the Ent-MDL discretization

To our great surprise, the Ent-MDL discretization
preprocess significantly improved the overall accuracy
of the Naive Bayes and SVM by (a) 58.7% and 59.8%
with ports, (b) 36.7% and 51.5% with the packet size
features, and (c) 45.0% and 47.8% with the both fea-
tures, respectively. In particular, the SVM performed
the best when both ports and packet size features are
discretized, achieving >98.0% average overall accuracy,
which was 1.3% higher than that of the C4.5 with the

8According to our results, the Ent-MDL discretization pre-
process rather slightly worsens the accuracy of the C4.5; by
1∼2% across all the tested traces. The reasoning is beyond
the scope of this paper.

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re
without Discretization

with Discretization

(a) NB with ports

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(b) SVM with ports

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(c) k-NN with ports

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization

(d) C4.5 with ports

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(e) NB with 1∼5pktsize

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(f) SVM with 1∼5pktsize

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(g) k-NN with 1∼5pktsize

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization

(h) C4.5 with 1∼5pktsize

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(i) NB with the both features

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization
with Discretization

(j) SVM with the both features

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

Application

without Discretization
with Discretization

(k) k-NN with the both features

 0

 0.2

 0.4

 0.6

 0.8

 1

edonkey

BitTorrent

W
eb

FTP
DNS

NTP

F-
m

ea
su

re

without Discretization

(l) C4.5 with the both features

Figure 10: Average F-measure with and without the Ent-MDL discretization

same features. The entropy-based discretization also
improved the overall accuracy of k -NN by 12% with
ports, while only marginally with packet size features (0.7%).
Consequently, all the tested algorithms achieved>93.2%

average overall accuracy when used with the entropy-
based discretization technique (either Ent-MDL or C4.5),
without any additional algorithm-specific tuning processes.
These results indicate that the entropy-based discretiza-
tion is (i) a key essential technique for accurate traf-
fic classification, which makes all the tested algorithms
achieve high and similar accuracy (93.2∼98.0%), and
(ii) more effective on ports than packet size informa-
tion, as shown in both Figure 9 and 109.

5.4 Classification speed
In this subsection, we measure the classification speeds

(i.e., the average number of classifications performed
per second, which is particularly important when con-
sidering real-time classification) of the tested algorithms
when used with and without the Ent-MDL discretiza-
tion, on ports and the sizes of the first five packets.
Tests were performed on a dedicated PC server with a
2.83 GHz Quad-core CPU and 8 GB RAM. Note that
we have evaluated the performance of concrete imple-

9We omit more detailed explanation on the F-measure Fig-
ure 10 due to lack of space.

mentations in the Java-based (slow) WEKA [3] software
suite on our test platform, not the theoretical complex-
ity of the algorithms because (i) traffic classification ef-
forts [29, 34, 17, 13, 37, 36, 47] have often used WEKA,
and (ii) this approach yields tangible performance num-
bers for comparisons [47, 29]. Optimized implementa-
tions would likely yield faster classification speeds for
all algorithms.
Figure 11 shows the results averaged over all the

traces. C4.5 is the fastest (60,178 classifications/sec.),

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

NB kNN SVM C4.5

A
vg

. N
um

be
r

of
 C

la
ss

if
ic

at
io

ns
 p

er
 S

ec
on

d

Algorithm

without Discretization
with Discretization

Figure 11: Average classification speed with and
without discretization

followed by Naive Bayes with the Ent-MDL discretiza-

tion (31,826 classifications/sec.), and SVM without the
discretization (around 18,259 classifications/sec.). SVM
with the discretization, k -NN with and without the dis-
cretization were the slowest three, with around 1,537,
914, and 849 classifications/sec, respectively.
Whereas the Ent-MDL discretization improved the

accuracies of all the tested algorithms, it affects the
classification speeds of the algorithms differently; it sig-
nificantly improves the classification speed of the Naive
Bayes algorithm by 438%, while the SVM and k -NN
show a precipitous (91.4%) and moderate (7.1%) drop
in their classification speeds with it, respectively.

6. CONCLUSIONS: WHY DISCRETIZATION?
We conducted a detailed analysis to identify the three

sources (i.e., ports, the first few packet sizes, and dis-
cretization of those features) of discriminative power in
classifying single-directional application traffic. To the
best of our knowledge, this is the first work that clearly
shows the feasibility of accurate traffic classification at
the beginning of both (i) single-directional TCP (with
ports and the sizes of the first five packets) and (ii) UDP
application flows (with ports and the sizes of the first
one or two packets), which can be applied to classify on-
line backbone traffic where one direction of a TCP flow
may be unobserved due to routing asymmetries. We
also showed that classification accuracy decreases when
the first few packets are missed; thus, for accurate clas-
sification, application traffic flows should be captured
from the beginning, not in the midst.
In section 5, we found that the entropy-based dis-

cretization (both Ent-MDL or C4.5) on ports and the
sizes of the first five packets substantially improves the
classification accuracies of all the tested machine learn-
ing algorithms without any algorithm-specific tuning
processes. We also obtained the same results with other
machine learning algorithms like Bayesian Networks and
Neural Networks, though we omitted the results due to
lack of space. These consistent results indicate that
the classification algorithms should deal with ports and
packet size features as discrete non-numerical nominal (or
categorical) intervals, not as continuous numbers, for
accurate traffic classification; which practically makes
sense, since the port “80” for WWW traffic is rather a
label, not a number. The same applies to the packet size
features as well; as many applications are programmed
to have often-used specific (range of) sizes for their first
few packets, the (range of) sizes should be dealt with
as a label for identification, not as a number.
To our surprise, according to our additional experi-

ments which this margin is too small to contain, even
the simplest discretization method like the Equal-Interval-
Width on the packet sizes feature improved the perfor-
mance of Naive Bayes and SVM (achieving around 70-
80% average overall accuracy), though not as much as

the entropy-based methods do; which also implies that
dealing with those traffic flow features as discrete non-
numerical intervals is the essential basis or technique
for accurate traffic identification, regardless of classifi-
cation algorithms to use.
Discretization has already been shown to work well

for Naive Bayes and SVM in multiple areas of various
pattern classification problems, since it does not make
assumptions about the form of the probability distri-
bution from which the quantitative feature values were
drawn, particularly for Naive Bayes [24, 11, 51, 33, 5].
This paper empirically confirms that the entropy-based
discretization (and even the simplest Equal-Interval-
Width discretization, though the results are omitted
due to lack of space) does the same for traffic classi-
fication as well, with ports and the sizes of the first few
consecutive packets in a single-directional flow.

7. ACKNOWLEDGMENTS
We are grateful to kc claffy, Marina Fomenkov, and

KiYoung Lee for having motivated us to pursue this
study. Our special thanks to Kenjiro Cho, Kensuke
Fukuda and Sue Moon for their excellent feedback and
useful discussions. This work was supported by NAP
of Korea Research Council of Fundamental Science and
Technology and the ITRC support program [NIPA-2010-
C1090-1011-0004] of MKE/NIPA. The ICT at Seoul
National University provided research facilities for this
study.

8. REFERENCES
[1] Ellacoya, http://www.ellacoya.com.
[2] Packeteer, http://www.packeteer.com.
[3] Weka 3: Data Mining Software in Java

http://www.cs.waikato.ac.nz/ml/weka/.
[4] T. Auld, A. W. Moore, and S. F. Gull. Bayesian neural

networks for internet traffic classification. IEEE
Transactions on Neural Networks, 18(1):223–239, 2007.

[5] I. Babaoğlu, O. Findik, and E. Ülker. Effects of
discretization on determination of coronary artery disease
using support vector machine. In Proceedings of ICIS.
ACM, 2009.

[6] L. Bernaille, R. Teixeira, and K. Salamatian. Early
application identification. In Proceedings of ACM
CoNEXT, 2006.

[7] A. L. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artif. Intell.,
97(1-2):245–271, 1997.

[8] CAIDA. A day in the life of the internet
http://www.caida.org/projects/ditl/.

[9] K. Claffy, H.-W. Braun, and G. Polyzos. A parameterizable
methodology for internet traffic flow profiling. Selected
Areas in Communications, IEEE Journal on,
13(8):1481–1494, Oct. 1995.

[10] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic
classification through simple statistical fingerprinting.
SIGCOMM Comput. Commun. Rev., 37(1):5–16, 2007.

[11] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and
unsupervised discretization of continuous features. In
Proceedings of ICML. Morgan Kaufmann Publishers Inc.,
1995.

[12] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and
R. Sommer. Dynamic application-layer protocol analysis for

network intrusion detection. In Proceedings of USENIX-SS,
2006.

[13] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification
using clustering algorithms. In Proceedings of ACM
MineNet, 2006.

[14] J. Erman, A. Mahanti, and M. Arlitt. Byte me: a case for
byte accuracy in traffic classification. In Proceedings of
ACM MineNet, 2007.

[15] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and
C. Williamson. Offline/realtime traffic classification using
semi-supervised learning. Perform. Eval.,
64(9-12):1194–1213, 2007.

[16] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson.
Identifying and discriminating between web and
peer-to-peer traffic in the network core. In Proceedings of
WWW. ACM, 2007.

[17] J. Erman, A. Mahanti, and M. F. Arlitt. Internet traffic
identification using machine learning. In Proceedings of
IEEE GLOBECOM, Nov. 2006.

[18] A. Este, F. Gringoli, and L. Salgarelli. On the stability of
the information carried by traffic flow features at the
packet level. SIGCOMM Comput. Commun. Rev.,
39(3):13–18, 2009.

[19] U. M. Fayyad and K. B. Irani. On the handling of
continuous-valued attributes in decision tree generation.
Machine Learning, 8:87–102, 1992.

[20] U. M. Fayyad and K. B. Irani. Multi-interval discretization
of continuous-valued attributes for classification learning.
In Proceedings of the International Joint Conference on
Uncertainty in Articial Intelligence, 1993.

[21] P. Grunwald. A tutorial introduction to the minimum
description length principle. In Advances in Minimum
Description Length: Theory and Applications. MIT Press,
2005.

[22] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. Acas:
automated construction of application signatures. In
Proceedings of ACM MineNet, 2005.

[23] M. A. Hall. Correlation-based feature selection for discrete
and numeric class machine learning. In Proceedings of
ICML. Morgan Kaufmann Publishers Inc., 2000.

[24] C.-N. Hsu, H.-J. Huang, and T.-T. Wong. Why
discretization works for naive bayesian classifiers. In
Proceedings of ICML. Morgan Kaufmann Publishers Inc.,
2000.

[25] M. Iliofotou, H.-c. Kim, M. Faloutsos, M. Mitzenmacher,
P. Pappu, and G. Varghese. Graph-based p2p traffic
classification at the internet backbone. In Proceedings of
IEEE INFOCOM, 2009.

[26] Y. Jin, E. Sharafuddin, and Z.-L. Zhang. Unveiling core
network-wide communication patterns through application
traffic activity graph decomposition. In Proceedings of
ACM SIGMETRICS, 2009.

[27] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy.
Transport layer identification of p2p traffic. In Proceedings
of IMC. ACM, 2004.

[28] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc:
multilevel traffic classification in the dark. SIGCOMM
Comput. Commun. Rev., 35(4):229–240, 2005.

[29] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos,
and K. Lee. Internet traffic classification demystified:
myths, caveats, and the best practices. In Proceedings of
ACM CoNEXT, 2008.

[30] R. Kohavi and M. Sahami. Error-based and entropy-based
discretization of continuous features. In Proceedings of the
Second International Conference on Knowledge Discovery
and Data Mining, pages 114–119. AAAI Press, 1996.

[31] Z. Li, R. Yuan, and X. Guan. Accurate classification of the
internet traffic based on the svm method. In Proceedings of
IEEE ICC, June 2007.

[32] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization:
An enabling technique. Data Mining and Knowledge

Discovery, 6(4):393–423, Oct. 2002.
[33] Y. Liu, Z. Li, S. Guo, and T. Feng. Efficient, accurate

internet traffic classification using discretization in naive
bayes. In Proceedings of IEEE ICNSC, 2008.

[34] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow
clustering using machine learning techniques. In
Proceedings of PAM, 2004.

[35] A. W. Moore and K. Papagiannaki. Toward the accurate
identification of network applications. In Proceedings of
PAM, Mar. 2005.

[36] A. W. Moore and D. Zuev. Internet traffic classification
using bayesian analysis techniques. In Proceedings of ACM
SIGMETRICS, 2005.

[37] T. Nguyen and G. Armitage. Training on multiple sub-flows
to optimise the use of machine learning classifiers in
real-world ip networks. In Proceedings of IEEE LCN, 2006.

[38] J. C. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines, 1998.

[39] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[40] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[41] J. R. Quinlan. Improved use of continuous attributes in
c4.5. Journal of Artificial Intelligence Research, 4:77–90,
1996.

[42] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-service mapping for qos: a statistical
signature-based approach to ip traffic classification. In
Proceedings of IMC. ACM, 2004.

[43] L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing
traffic classifiers. SIGCOMM Comput. Commun. Rev.,
37(3):65–68, 2007.

[44] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable
in-network identification of p2p traffic using application
signatures. In Proceedings of WWW. ACM, 2004.

[45] S. Techn and K. M. Risvik. Discretization of numerical
attributes - preprocessing for machine learning.

[46] N. Williams, S. Zander, and G. Armitage. Evaluating
Machine Learning Algorithms for Automated Network
Application Identification. Technical Report 060410B,
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Apr. 2006.

[47] N. Williams, S. Zander, and G. Armitage. A preliminary
performance comparison of five machine learning
algorithms for practical ip traffic flow classification.
SIGCOMM Comput. Commun. Rev., 36(5):5–16, 2006.

[48] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques (Second Edition).
Morgan Kaufmann, June 2005.

[49] Y. J. Won, B.-C. Park, H.-T. Ju, M.-S. Kim, and J. W.
Hong. A hybrid approach for accurate application traffic
identification. In IEEE/IFIP E2EMON, Apr. 2006.

[50] X. Wu. A bayesian discretizer for real-valued attributes.
The Computer Journal, 39:688–691, 1996.

[51] Y. Yang and G. I. Webb. On why discretization works for
naive-bayes classifiers. In Australian Joint Conference on
AI, 2003.

[52] S. Zander, T. Nguyen, and G. Armitage. Automated traffic
classification and application identification using machine
learning. In Proceedings of IEEE LCN, 2005.

